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Definition 1 (Adjacency Matrix of a Function). Let f : Z/nZ — Z/nZ be any function. The
function f is represented by an n x n adjacency matrix A = A, where the entry a;; = dy ; and
d; ; is the Kronecker delta. With this convention, each row of A contains exactly one non-zero entry.

Lemma 2. Let f : Z/nZ — Z/nZ be any function and A = A, be the adjacency matriz of the
function f. Then for alli € {0,1,...,.n— 1} and y € Z"

(Ay), = Yr@y-

Proof. The proof follows from the Definition 1.
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Lemma 3. Let f : Z/nZ — Z/nZ be any function and A = A be the adjacency matriz of the
function f. Let v € Z™, y = adj(xI — A)v and m = det(xI — A). Then for alli € {0,1,...,n—1}

Yy = TY; — mu;.
Proof. For adjugate matrix we have identity (zI — A)adj(al — A) = det(xI — A)I. Therefore,
mv =det(z] — A)v = (xI — A)adj(z] — A)v = (x] — A)y = zy — Ay.
The final equality follows from the Lemma 2. O

Lemma 4. Let M be an n x n matriz with polynomial entries m;; € Z[z]. Then
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deg(det(M)) < . deg(my;).
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Proof. The determinant is a sum over permutations ¢ of products HZ:OI Myg(;),;- Bach product has

degree at most 22:01 deg(m, ;) ;) Since a single element of a sum is at most the whole sum (when

n—1

all terms are non-negative), this is bounded by ./ Z?:_Ol deg(m,;). The degree of a sum is at

most the maximum degree of its summands. O

Lemma 5. Let A be an nxn matriz with integer entries. The characteristic matriz x 4(z) = xI—A
has determinant equal to the characteristic polynomial:

det(x 4(x)) = det(xl — A)
For allm € N, this polynomial is monic of degree n.
Proof. This follows from the standard properties of the characteristic polynomial. O

Lemma 6. Let A be an n x n matriz with integer entries and x 4(x) = xI — A be its characteristic
matriz. For i # j, the (i,7) entry of adj(x 4(x)) has degree at most n — 2.



Proof. The adjugate entry adj(x4());; equals the determinant of the characteristic matrix with
row j and column 4 removed from x 4 ().

This submatrix has diagonal entries from y 4 () except at diagonal positions ¢ and j (which are
deleted). Since x 4(z) has diagonal entries of degree 1 (from zI) and off-diagonal entries of degree
0 (from —A), the submatrix has exactly n — 2 diagonal entries of degree 1 and all other entries of
degree 0.

By Lemma 4, the determinant has degree at most n — 2. O

Lemma 7. Let M = M(z) = adj(z] — A) be the adjugate of the characteristic matriz xI — A.
Then the matriz entries m;; = p;;(z) are polynomials in x for alli,j € {0,1,...,n — 1} such that

o p;;(x) is monic of degree n—1 for all i € {0,1,...,n—1} and
e p;;(z) has degree at most n —2 for alli # j € {0,1,...,n —1}.

Proof. The diagonal entries of adj(z] — A) are characteristic polynomials of (n — 1) x (n — 1)
submatrices, hence monic of degree n — 1 by Lemma 5.
The off-diagonal case follows directly from Lemma 6. 0

Definition 8. For a polynomial p(z) = Zj:o p;x’ € Z[z], we define the coefficients bound:

d
ol = Ipil
i=0
Lemma 9. If p € Z[z] has positive leading coefficient, then for all integers n > |p|, we have n > 0
and p(n) > 0.

Proof. Lemma is trivially true for d = 0 so we can assume d > 1. Write p(n) = an? + r(n) where
a > 1 is the leading coefficient of p, d = deg(p), and deg(r) < d. For n > |p|:

n>lpl>a>1>0.
Since n > 1, we have |r(n)| < Bn¢~! where B = |p| — a. Therefore,
p(n) = an? +r(n) > an® — Bn4t =n?L(an— B) > (alp| = B) > |p| = B=a>1> 0.
O

Lemma 10. Let M = (m;;) = M(z) = adj(z] — A) be the adjugate of the characteristic matriz

al —A. Letv=(1,2,...,n)" and m = m(z) = det(xl — A). Then for sufficiently large integer x:
0<yy<y; < <Yy <m

Proof. The proof follows from Lemma 7 and Lemma 9. Let y = Mv. Then y, = ZZ;; my,(k+1).

For each entry y;, we express it as evaluation of a polynomial p,(x) = Z:;é my,(z)(k+1) € Z[x].
By Lemma 7, the diagonal entry m,; is monic of degree n — 1, while off-diagonal entries m,;; (for
k # i) have degree at most n — 2. Therefore, the coefficient of "1 in p, is i + 1 > 0 (dominated
by the m,;(i + 1) term).



For the difference p; —p; with j > i, the leading term comes from (m;;(j+1) —m;;(i+1)). Since
both m;; and m,; are monic of degree n — 1, the leading coefficient of p; —p; is (j +1) — (i +1) =
j—1i>0.

Similarly, for p,,(x) = det(zI — A) — p,(x), since det(zI — A) is monic of degree n (by Lemma
5) and p; has degree at most n — 1, the leading coefficient is 1.

Since p,(x) has leading coefficient 0 + 1 = 1 > 0, we have y, > 0 for sufficiently large x.

Applying Lemma 9 to these polynomials with positive leading coefficients gives the existence of
xo such that all required inequalities hold for x > z. O

Definition 11 (Linear Representation). Let f : Z/nZ — Z/nZ be any function. A linear repre-
sentation of f is an injective function j: Z/nZ — Z/mZ such that for all i € {0,1,...,n — 1},

J(f(@) = a- (i)
in Z/mZ, where m is a positive integer and a is a multiplier from Z/mZ.

Lemma 12 (Linear Representation Lemma). For any function f : Z/nZ — Z/nZ with n > 1,
there exists an integer a; such that for any a > ag, we can construct a linear representation of f
with multiplier a and modulus m > a.

Proof. Let A = A; be the adjacency matrix of f and let v = (1,2, ... ,n)T. By Lemma 10, there
exists z, such that for all integers x > x, the entries y; of y = adj(al — A)v satisfy:

0<yy <y < <yYpq <m(x)

where m(z) = det(xI — A) is the characteristic polynomial of A.

Since n > 1, the polynomial m(z) is monic of degree n > 2. Therefore, m —id (where id(z) = )
is also monic of degree n, with leading coefficient 1 > 0.

By Lemma 9, the polynomial m — id is positive for all x > |m —id]|.

Set a; = max(z,|m —id|). For any a > a;, we have:

e a > g, so the strict inequalities 0 < y, < y; < -+ <y, < m(a) hold

e a>|m—id|, so (m—id)(a) = m(a) —a > 0, which gives m(a) > a
Define:

e m =m(a) = det(al — A) as the modulus (note: m > a by construction)
e j:Z/nZ — Z/mZ by j(i) = y; mod m, where y = adj(al — A)v

Since 0 <y, < m for all ¢ and the y, are strictly increasing, j is injective.
By Lemma 3, we have y;;) = a-y; —m-v; for all 4. Taking this equation modulo m gives:

J(f(i) =a-j(i) (mod m)
Therefore, j is a linear representation of f with modulus m > a and multiplier a € Z/mZ. O

Theorem 13 (Main Theorem). Any finite function f : Z/nZ — Z/nZ has a linear representation.

Proof. For n > 1, apply Lemma 12 to obtain a threshold a; and choose a = a; +1 > a;. The
lemma provides an explicit construction of a linear representation for f with multiplier a; + 1.
For n = 1, the result is trivial: there is only one element in Z/1Z (namely 0), so any function
satisfies f(0) = 0. We can use m = 1, the identity map j = id, and multiplier 0, giving j(f(0)) =
0=0-5(0)in Z/1Z. O



Examples

Example 14 (Quadratic Function in Z/37Z). Consider the function f : Z/37Z — 7Z/3Z defined by
f(x) = 22, This function maps:

00
11
2 4=1 (mod 3)

Despite being a non-linear function, Theorem 13 guarantees that f has a linear representation.

The adjacency matrix is:
1 00
Ap= (O 1 0)
010

rz—1 0 0
a:I—Af: 0 z—1 0
0 -1 =z

The characteristic polynomial is:

The characteristic matrix is:

m=det(x] —A;) = (x—1)* z=2° -2+ =z
The adjugate matrix is:
z(x —1) 0 0
adj(zl — Ay) = 0 x(x—1) 0
0 (x—1) (x—1)2

Using vector v = (1,2, 3)T, we get:

z(x—1)-1 v’ —x 22—z
y:adj(:ﬂI—Af)-U:( x(rx—1)-2 ):( 22% — 2x ):( 222 — 2x )
(x—1)-2+ (x—1)%-3 (r—1)(3z—1) 322 —dr +1

For x = 4, we compute:

Yo=42—4=16—4=12

y, =2(42) —2(4) =32 -8 =24

Yoy =3(42) —4(4) +1 =48 — 16+ 1 =33
m=43—2(42) +4=64—32+4 =136

The injection j: Z/3Z — 7 /367 is defined by j(i) = y;:
J0) =12, (1) =24, j(2)=33

These values are strictly increasing and bounded by m = 36, so j is injective.



We verify the linear representation property using Lemma 3.
The lemma states that yz;) = xy; —m - v;, which we can rewrite as:

J(f(@) = xj(i)  (mod m).

Verification:
J(f(0))=4(0)=12=4-12—-36-1=48—-36=12=4-4(0) (mod 36) v
Jf)=45(1)=24=4-24—-36-2=96—72=24=4-4(1) (mod 36) Vv
J(f(2)=75(1)=24=4-33-36-3=132—108=24=4"-4(2) (mod 36) Vv

Thus j(f(i)) = 4 - j(i) (mod 36) for all i € Z/37, confirming the quadratic function f(x) = 2
has a linear representation with modulus m = 36 and multiplier a = 4.



