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Definition 1 (Adjacency Matrix of a Function). Let 𝑓 ∶ ℤ/𝑛ℤ → ℤ/𝑛ℤ be any function. The
function 𝑓 is represented by an 𝑛 × 𝑛 adjacency matrix 𝐴 = 𝐴𝑓 , where the entry 𝑎𝑖𝑗 = 𝛿𝑓(𝑖),𝑗 and
𝛿𝑖,𝑗 is the Kronecker delta. With this convention, each row of 𝐴 contains exactly one non-zero entry.

Lemma 2. Let 𝑓 ∶ ℤ/𝑛ℤ → ℤ/𝑛ℤ be any function and 𝐴 = 𝐴𝑓 be the adjacency matrix of the
function 𝑓. Then for all 𝑖 ∈ {0, 1, … , 𝑛 − 1} and 𝑦 ∈ ℤ𝑛

(𝐴𝑦)𝑖 = 𝑦𝑓(𝑖).

Proof. The proof follows from the Definition 1.

(𝐴𝑦)𝑖 =
𝑛−1
∑
𝑗=0

𝑎𝑖𝑗𝑦𝑗 =
𝑛−1
∑
𝑗=0

𝛿𝑓(𝑖),𝑗𝑦𝑗 = 𝑦𝑓(𝑖)

Lemma 3. Let 𝑓 ∶ ℤ/𝑛ℤ → ℤ/𝑛ℤ be any function and 𝐴 = 𝐴𝑓 be the adjacency matrix of the
function 𝑓. Let 𝑣 ∈ ℤ𝑛, 𝑦 = adj(𝑥𝐼 − 𝐴)𝑣 and 𝑚 = det(𝑥𝐼 − 𝐴). Then for all 𝑖 ∈ {0, 1, … , 𝑛 − 1}

𝑦𝑓(𝑖) = 𝑥𝑦𝑖 − 𝑚𝑣𝑖.

Proof. For adjugate matrix we have identity (𝑥𝐼 − 𝐴) adj(𝑥𝐼 − 𝐴) = det(𝑥𝐼 − 𝐴)𝐼 . Therefore,

𝑚𝑣 = det(𝑥𝐼 − 𝐴)𝑣 = (𝑥𝐼 − 𝐴) adj(𝑥𝐼 − 𝐴)𝑣 = (𝑥𝐼 − 𝐴)𝑦 = 𝑥𝑦 − 𝐴𝑦.

The final equality follows from the Lemma 2.

Lemma 4. Let 𝑀 be an 𝑛 × 𝑛 matrix with polynomial entries 𝑚𝑖𝑗 ∈ ℤ[𝑥]. Then

deg(det(𝑀)) ≤
𝑛−1
∑
𝑖=0

𝑛−1
∑
𝑗=0

deg(𝑚𝑖𝑗).

Proof. The determinant is a sum over permutations 𝜎 of products ∏𝑛−1
𝑖=0 𝑚𝜎(𝑖),𝑖. Each product has

degree at most ∑𝑛−1
𝑖=0 deg(𝑚𝜎(𝑖),𝑖). Since a single element of a sum is at most the whole sum (when

all terms are non-negative), this is bounded by ∑𝑛−1
𝑖=0 ∑𝑛−1

𝑗=0 deg(𝑚𝑖𝑗). The degree of a sum is at
most the maximum degree of its summands.

Lemma 5. Let 𝐴 be an 𝑛×𝑛 matrix with integer entries. The characteristic matrix 𝜒𝐴(𝑥) = 𝑥𝐼 −𝐴
has determinant equal to the characteristic polynomial:

det(𝜒𝐴(𝑥)) = det(𝑥𝐼 − 𝐴)

For all 𝑛 ∈ 𝑁 , this polynomial is monic of degree 𝑛.

Proof. This follows from the standard properties of the characteristic polynomial.

Lemma 6. Let 𝐴 be an 𝑛 × 𝑛 matrix with integer entries and 𝜒𝐴(𝑥) = 𝑥𝐼 − 𝐴 be its characteristic
matrix. For 𝑖 ≠ 𝑗, the (𝑖, 𝑗) entry of adj(𝜒𝐴(𝑥)) has degree at most 𝑛 − 2.
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Proof. The adjugate entry adj(𝜒𝐴(𝑥))𝑖𝑗 equals the determinant of the characteristic matrix with
row 𝑗 and column 𝑖 removed from 𝜒𝐴(𝑥).

This submatrix has diagonal entries from 𝜒𝐴(𝑥) except at diagonal positions 𝑖 and 𝑗 (which are
deleted). Since 𝜒𝐴(𝑥) has diagonal entries of degree 1 (from 𝑥𝐼) and off-diagonal entries of degree
0 (from −𝐴), the submatrix has exactly 𝑛 − 2 diagonal entries of degree 1 and all other entries of
degree 0.

By Lemma 4, the determinant has degree at most 𝑛 − 2.

Lemma 7. Let 𝑀 = 𝑀(𝑥) = adj(𝑥𝐼 − 𝐴) be the adjugate of the characteristic matrix 𝑥𝐼 − 𝐴.
Then the matrix entries 𝑚𝑖𝑗 = 𝑝𝑖𝑗(𝑥) are polynomials in 𝑥 for all 𝑖, 𝑗 ∈ {0, 1, … , 𝑛 − 1} such that

• 𝑝𝑖𝑖(𝑥) is monic of degree 𝑛 − 1 for all 𝑖 ∈ {0, 1, … , 𝑛 − 1} and

• 𝑝𝑖𝑗(𝑥) has degree at most 𝑛 − 2 for all 𝑖 ≠ 𝑗 ∈ {0, 1, … , 𝑛 − 1}.

Proof. The diagonal entries of adj(𝑥𝐼 − 𝐴) are characteristic polynomials of (𝑛 − 1) × (𝑛 − 1)
submatrices, hence monic of degree 𝑛 − 1 by Lemma 5.

The off-diagonal case follows directly from Lemma 6.

Definition 8. For a polynomial 𝑝(𝑥) = ∑𝑑
𝑖=0 𝑝𝑖𝑥𝑖 ∈ ℤ[𝑥], we define the coefficients bound:

|𝑝| =
𝑑

∑
𝑖=0

|𝑝𝑖|

Lemma 9. If 𝑝 ∈ ℤ[𝑥] has positive leading coefficient, then for all integers 𝑛 ≥ |𝑝|, we have 𝑛 > 0
and 𝑝(𝑛) > 0.

Proof. Lemma is trivially true for 𝑑 = 0 so we can assume 𝑑 ≥ 1. Write 𝑝(𝑛) = 𝑎𝑛𝑑 + 𝑟(𝑛) where
𝑎 ≥ 1 is the leading coefficient of 𝑝, 𝑑 = deg(𝑝), and deg(𝑟) < 𝑑. For 𝑛 ≥ |𝑝|:

𝑛 ≥ |𝑝| ≥ 𝑎 ≥ 1 > 0.

Since 𝑛 ≥ 1, we have |𝑟(𝑛)| ≤ 𝐵𝑛𝑑−1 where 𝐵 = |𝑝| − 𝑎. Therefore,

𝑝(𝑛) = 𝑎𝑛𝑑 + 𝑟(𝑛) ≥ 𝑎𝑛𝑑 − 𝐵𝑛𝑑−1 = 𝑛𝑑−1(𝑎𝑛 − 𝐵) ≥ (𝑎|𝑝| − 𝐵) ≥ |𝑝| − 𝐵 = 𝑎 ≥ 1 > 0.

Lemma 10. Let 𝑀 = (𝑚𝑖𝑗) = 𝑀(𝑥) = adj(𝑥𝐼 − 𝐴) be the adjugate of the characteristic matrix
𝑥𝐼 − 𝐴. Let 𝑣 = (1, 2, … , 𝑛)𝑇 and 𝑚 = 𝑚(𝑥) = det(𝑥𝐼 − 𝐴). Then for sufficiently large integer 𝑥:

0 < 𝑦0 < 𝑦1 < ⋯ < 𝑦𝑛−1 < 𝑚

Proof. The proof follows from Lemma 7 and Lemma 9. Let 𝑦 = 𝑀𝑣. Then 𝑦𝑖 = ∑𝑛−1
𝑘=0 𝑚𝑖𝑘(𝑘 + 1).

For each entry 𝑦𝑖, we express it as evaluation of a polynomial 𝑝𝑖(𝑥) = ∑𝑛−1
𝑘=0 𝑚𝑖𝑘(𝑥)(𝑘+1) ∈ ℤ[𝑥].

By Lemma 7, the diagonal entry 𝑚𝑖𝑖 is monic of degree 𝑛 − 1, while off-diagonal entries 𝑚𝑖𝑘 (for
𝑘 ≠ 𝑖) have degree at most 𝑛 − 2. Therefore, the coefficient of 𝑥𝑛−1 in 𝑝𝑖 is 𝑖 + 1 > 0 (dominated
by the 𝑚𝑖𝑖(𝑖 + 1) term).
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For the difference 𝑝𝑗 −𝑝𝑖 with 𝑗 > 𝑖, the leading term comes from (𝑚𝑗𝑗(𝑗+1)−𝑚𝑖𝑖(𝑖+1)). Since
both 𝑚𝑗𝑗 and 𝑚𝑖𝑖 are monic of degree 𝑛 − 1, the leading coefficient of 𝑝𝑗 − 𝑝𝑖 is (𝑗 + 1) − (𝑖 + 1) =
𝑗 − 𝑖 > 0.

Similarly, for 𝑝𝑚(𝑥) = det(𝑥𝐼 − 𝐴) − 𝑝𝑖(𝑥), since det(𝑥𝐼 − 𝐴) is monic of degree 𝑛 (by Lemma
5) and 𝑝𝑖 has degree at most 𝑛 − 1, the leading coefficient is 1.

Since 𝑝0(𝑥) has leading coefficient 0 + 1 = 1 > 0, we have 𝑦0 > 0 for sufficiently large 𝑥.
Applying Lemma 9 to these polynomials with positive leading coefficients gives the existence of

𝑥0 such that all required inequalities hold for 𝑥 > 𝑥0.

Definition 11 (Linear Representation). Let 𝑓 ∶ ℤ/𝑛ℤ → ℤ/𝑛ℤ be any function. A linear repre-
sentation of 𝑓 is an injective function 𝑗 ∶ ℤ/𝑛ℤ → ℤ/𝑚ℤ such that for all 𝑖 ∈ {0, 1, … , 𝑛 − 1},

𝑗(𝑓(𝑖)) = 𝑎 ⋅ 𝑗(𝑖)
in ℤ/𝑚ℤ, where 𝑚 is a positive integer and 𝑎 is a multiplier from ℤ/𝑚ℤ.
Lemma 12 (Linear Representation Lemma). For any function 𝑓 ∶ ℤ/𝑛ℤ → ℤ/𝑛ℤ with 𝑛 > 1,
there exists an integer 𝑎𝑓 such that for any 𝑎 > 𝑎𝑓 , we can construct a linear representation of 𝑓
with multiplier 𝑎 and modulus 𝑚 > 𝑎.
Proof. Let 𝐴 = 𝐴𝑓 be the adjacency matrix of 𝑓 and let 𝑣 = (1, 2, … , 𝑛)𝑇 . By Lemma 10, there
exists 𝑥0 such that for all integers 𝑥 > 𝑥0, the entries 𝑦𝑖 of 𝑦 = adj(𝑥𝐼 − 𝐴)𝑣 satisfy:

0 ≤ 𝑦0 < 𝑦1 < ⋯ < 𝑦𝑛−1 < 𝑚(𝑥)
where 𝑚(𝑥) = det(𝑥𝐼 − 𝐴) is the characteristic polynomial of 𝐴.

Since 𝑛 > 1, the polynomial 𝑚(𝑥) is monic of degree 𝑛 ≥ 2. Therefore, 𝑚− id (where id(𝑥) = 𝑥)
is also monic of degree 𝑛, with leading coefficient 1 > 0.

By Lemma 9, the polynomial 𝑚 − id is positive for all 𝑥 ≥ |𝑚 − id|.
Set 𝑎𝑓 = max(𝑥0, |𝑚 − id|). For any 𝑎 > 𝑎𝑓 , we have:
• 𝑎 > 𝑥0, so the strict inequalities 0 ≤ 𝑦0 < 𝑦1 < ⋯ < 𝑦𝑛−1 < 𝑚(𝑎) hold

• 𝑎 ≥ |𝑚 − id|, so (𝑚 − id)(𝑎) = 𝑚(𝑎) − 𝑎 > 0, which gives 𝑚(𝑎) > 𝑎
Define:
• 𝑚 = 𝑚(𝑎) = det(𝑎𝐼 − 𝐴) as the modulus (note: 𝑚 > 𝑎 by construction)

• 𝑗 ∶ ℤ/𝑛ℤ → ℤ/𝑚ℤ by 𝑗(𝑖) = 𝑦𝑖 mod 𝑚, where 𝑦 = adj(𝑎𝐼 − 𝐴)𝑣
Since 0 ≤ 𝑦𝑖 < 𝑚 for all 𝑖 and the 𝑦𝑖 are strictly increasing, 𝑗 is injective.
By Lemma 3, we have 𝑦𝑓(𝑖) = 𝑎 ⋅ 𝑦𝑖 − 𝑚 ⋅ 𝑣𝑖 for all 𝑖. Taking this equation modulo 𝑚 gives:

𝑗(𝑓(𝑖)) ≡ 𝑎 ⋅ 𝑗(𝑖) (mod 𝑚)
Therefore, 𝑗 is a linear representation of 𝑓 with modulus 𝑚 > 𝑎 and multiplier 𝑎 ∈ ℤ/𝑚ℤ.

Theorem 13 (Main Theorem). Any finite function 𝑓 ∶ ℤ/𝑛ℤ → ℤ/𝑛ℤ has a linear representation.
Proof. For 𝑛 > 1, apply Lemma 12 to obtain a threshold 𝑎𝑓 and choose 𝑎 = 𝑎𝑓 + 1 > 𝑎𝑓 . The
lemma provides an explicit construction of a linear representation for 𝑓 with multiplier 𝑎𝑓 + 1.

For 𝑛 = 1, the result is trivial: there is only one element in ℤ/1ℤ (namely 0), so any function
satisfies 𝑓(0) = 0. We can use 𝑚 = 1, the identity map 𝑗 = id, and multiplier 0, giving 𝑗(𝑓(0)) =
0 = 0 ⋅ 𝑗(0) in ℤ/1ℤ.

3



Examples
Example 14 (Quadratic Function in ℤ/3ℤ). Consider the function 𝑓 ∶ ℤ/3ℤ → ℤ/3ℤ defined by
𝑓(𝑥) = 𝑥2. This function maps:

0 ↦ 0
1 ↦ 1
2 ↦ 4 ≡ 1 (mod 3)

Despite being a non-linear function, Theorem 13 guarantees that 𝑓 has a linear representation.
The adjacency matrix is:

𝐴𝑓 = ⎛⎜
⎝

1 0 0
0 1 0
0 1 0

⎞⎟
⎠

The characteristic matrix is:

𝑥𝐼 − 𝐴𝑓 = ⎛⎜
⎝

𝑥 − 1 0 0
0 𝑥 − 1 0
0 −1 𝑥

⎞⎟
⎠

The characteristic polynomial is:

𝑚 = det(𝑥𝐼 − 𝐴𝑓) = (𝑥 − 1)2 ⋅ 𝑥 = 𝑥3 − 2𝑥2 + 𝑥

The adjugate matrix is:

adj(𝑥𝐼 − 𝐴𝑓) = ⎛⎜
⎝

𝑥(𝑥 − 1) 0 0
0 𝑥(𝑥 − 1) 0
0 (𝑥 − 1) (𝑥 − 1)2

⎞⎟
⎠

Using vector 𝑣 = (1, 2, 3)𝑇 , we get:

𝑦 = adj(𝑥𝐼 − 𝐴𝑓) ⋅ 𝑣 = ⎛⎜
⎝

𝑥(𝑥 − 1) ⋅ 1
𝑥(𝑥 − 1) ⋅ 2

(𝑥 − 1) ⋅ 2 + (𝑥 − 1)2 ⋅ 3
⎞⎟
⎠

= ⎛⎜
⎝

𝑥2 − 𝑥
2𝑥2 − 2𝑥

(𝑥 − 1)(3𝑥 − 1)
⎞⎟
⎠

= ⎛⎜
⎝

𝑥2 − 𝑥
2𝑥2 − 2𝑥

3𝑥2 − 4𝑥 + 1
⎞⎟
⎠

For 𝑥 = 4, we compute:

𝑦0 = 42 − 4 = 16 − 4 = 12
𝑦1 = 2(42) − 2(4) = 32 − 8 = 24
𝑦2 = 3(42) − 4(4) + 1 = 48 − 16 + 1 = 33
𝑚 = 43 − 2(42) + 4 = 64 − 32 + 4 = 36

The injection 𝑗 ∶ ℤ/3ℤ → ℤ/36ℤ is defined by 𝑗(𝑖) = 𝑦𝑖:

𝑗(0) = 12, 𝑗(1) = 24, 𝑗(2) = 33

These values are strictly increasing and bounded by 𝑚 = 36, so 𝑗 is injective.
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We verify the linear representation property using Lemma 3.
The lemma states that 𝑦𝑓(𝑖) = 𝑥𝑦𝑖 − 𝑚 ⋅ 𝑣𝑖, which we can rewrite as:

𝑗(𝑓(𝑖)) ≡ 𝑥𝑗(𝑖) (mod 𝑚).

Verification:

𝑗(𝑓(0)) = 𝑗(0) = 12 ≡ 4 ⋅ 12 − 36 ⋅ 1 = 48 − 36 = 12 = 4 ⋅ 𝑗(0) (mod 36) ✓
𝑗(𝑓(1)) = 𝑗(1) = 24 ≡ 4 ⋅ 24 − 36 ⋅ 2 = 96 − 72 = 24 = 4 ⋅ 𝑗(1) (mod 36) ✓
𝑗(𝑓(2)) = 𝑗(1) = 24 ≡ 4 ⋅ 33 − 36 ⋅ 3 = 132 − 108 = 24 = 4 ⋅ 𝑗(2) (mod 36) ✓

Thus 𝑗(𝑓(𝑖)) ≡ 4 ⋅ 𝑗(𝑖) (mod 36) for all 𝑖 ∈ ℤ/3ℤ, confirming the quadratic function 𝑓(𝑥) = 𝑥2

has a linear representation with modulus 𝑚 = 36 and multiplier 𝑎 = 4.
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