

Lean Formalization of arXiv:2510.20167

Roman Bacik

January 8, 2026

Definition 1 (Adjacency Matrix of a Function). Let $f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$ be any function. The function f is represented by an $n \times n$ adjacency matrix $A = A_f$, where the entry $a_{ij} = \delta_{f(i),j}$ and $\delta_{i,j}$ is the Kronecker delta. With this convention, each row of A contains exactly one non-zero entry.

Lemma 2. Let $f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$ be any function and $A = A_f$ be the adjacency matrix of the function f . Then for all $i \in \{0, 1, \dots, n-1\}$ and $y \in \mathbb{Z}^n$

$$(Ay)_i = y_{f(i)}.$$

Proof. The proof follows from the Definition 1.

$$(Ay)_i = \sum_{j=0}^{n-1} a_{ij} y_j = \sum_{j=0}^{n-1} \delta_{f(i),j} y_j = y_{f(i)}$$

□

Lemma 3. Let $f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$ be any function and $A = A_f$ be the adjacency matrix of the function f . Let $v \in \mathbb{Z}^n$, $y = \text{adj}(xI - A)v$ and $m = \det(xI - A)$. Then for all $i \in \{0, 1, \dots, n-1\}$

$$y_{f(i)} = xy_i - mv_i.$$

Proof. For adjugate matrix we have identity $(xI - A)\text{adj}(xI - A) = \det(xI - A)I$. Therefore,

$$mv = \det(xI - A)v = (xI - A)\text{adj}(xI - A)v = (xI - A)y = xy - Ay.$$

The final equality follows from the Lemma 2.

□

Lemma 4. Let M be an $n \times n$ matrix with polynomial entries $m_{ij} \in \mathbb{Z}[x]$. Then

$$\deg(\det(M)) \leq \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \deg(m_{ij}).$$

Proof. The determinant is a sum over permutations σ of products $\prod_{i=0}^{n-1} m_{\sigma(i),i}$. Each product has degree at most $\sum_{i=0}^{n-1} \deg(m_{\sigma(i),i})$. Since a single element of a sum is at most the whole sum (when all terms are non-negative), this is bounded by $\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \deg(m_{ij})$. The degree of a sum is at most the maximum degree of its summands. □

Lemma 5. Let A be an $n \times n$ matrix with integer entries. The characteristic matrix $\chi_A(x) = xI - A$ has determinant equal to the characteristic polynomial:

$$\det(\chi_A(x)) = \det(xI - A)$$

For all $n \in N$, this polynomial is monic of degree n .

Proof. This follows from the standard properties of the characteristic polynomial. □

Lemma 6. Let A be an $n \times n$ matrix with integer entries and $\chi_A(x) = xI - A$ be its characteristic matrix. For $i \neq j$, the (i, j) entry of $\text{adj}(\chi_A(x))$ has degree at most $n - 2$.

Proof. The adjugate entry $\text{adj}(\chi_A(x))_{ij}$ equals the determinant of the characteristic matrix with row j and column i removed from $\chi_A(x)$.

This submatrix has diagonal entries from $\chi_A(x)$ except at diagonal positions i and j (which are deleted). Since $\chi_A(x)$ has diagonal entries of degree 1 (from xI) and off-diagonal entries of degree 0 (from $-A$), the submatrix has exactly $n - 2$ diagonal entries of degree 1 and all other entries of degree 0.

By Lemma 4, the determinant has degree at most $n - 2$. \square

Lemma 7. *Let $M = M(x) = \text{adj}(xI - A)$ be the adjugate of the characteristic matrix $xI - A$. Then the matrix entries $m_{ij} = p_{ij}(x)$ are polynomials in x for all $i, j \in \{0, 1, \dots, n - 1\}$ such that*

- $p_{ii}(x)$ is monic of degree $n - 1$ for all $i \in \{0, 1, \dots, n - 1\}$ and
- $p_{ij}(x)$ has degree at most $n - 2$ for all $i \neq j \in \{0, 1, \dots, n - 1\}$.

Proof. The diagonal entries of $\text{adj}(xI - A)$ are characteristic polynomials of $(n - 1) \times (n - 1)$ submatrices, hence monic of degree $n - 1$ by Lemma 5.

The off-diagonal case follows directly from Lemma 6. \square

Definition 8. For a polynomial $p(x) = \sum_{i=0}^d p_i x^i \in \mathbb{Z}[x]$, we define the coefficients bound:

$$|p| = \sum_{i=0}^d |p_i|$$

Lemma 9. *If $p \in \mathbb{Z}[x]$ has positive leading coefficient, then for all integers $n \geq |p|$, we have $n > 0$ and $p(n) > 0$.*

Proof. Lemma is trivially true for $d = 0$ so we can assume $d \geq 1$. Write $p(n) = an^d + r(n)$ where $a \geq 1$ is the leading coefficient of p , $d = \deg(p)$, and $\deg(r) < d$. For $n \geq |p|$:

$$n \geq |p| \geq a \geq 1 > 0.$$

Since $n \geq 1$, we have $|r(n)| \leq Bn^{d-1}$ where $B = |p| - a$. Therefore,

$$p(n) = an^d + r(n) \geq an^d - Bn^{d-1} = n^{d-1}(an - B) \geq (a|p| - B) \geq |p| - B = a \geq 1 > 0.$$

\square

Lemma 10. *Let $M = (m_{ij}) = M(x) = \text{adj}(xI - A)$ be the adjugate of the characteristic matrix $xI - A$. Let $v = (1, 2, \dots, n)^T$ and $m = m(x) = \det(xI - A)$. Then for sufficiently large integer x :*

$$0 < y_0 < y_1 < \dots < y_{n-1} < m$$

Proof. The proof follows from Lemma 7 and Lemma 9. Let $y = Mv$. Then $y_i = \sum_{k=0}^{n-1} m_{ik}(k+1)$.

For each entry y_i , we express it as evaluation of a polynomial $p_i(x) = \sum_{k=0}^{n-1} m_{ik}(x)(k+1) \in \mathbb{Z}[x]$. By Lemma 7, the diagonal entry m_{ii} is monic of degree $n - 1$, while off-diagonal entries m_{ik} (for $k \neq i$) have degree at most $n - 2$. Therefore, the coefficient of x^{n-1} in p_i is $i + 1 > 0$ (dominated by the $m_{ii}(i+1)$ term).

For the difference $p_j - p_i$ with $j > i$, the leading term comes from $(m_{jj}(j+1) - m_{ii}(i+1))$. Since both m_{jj} and m_{ii} are monic of degree $n-1$, the leading coefficient of $p_j - p_i$ is $(j+1) - (i+1) = j - i > 0$.

Similarly, for $p_m(x) = \det(xI - A) - p_i(x)$, since $\det(xI - A)$ is monic of degree n (by Lemma 5) and p_i has degree at most $n-1$, the leading coefficient is 1.

Since $p_0(x)$ has leading coefficient $0+1=1 > 0$, we have $y_0 > 0$ for sufficiently large x .

Applying Lemma 9 to these polynomials with positive leading coefficients gives the existence of x_0 such that all required inequalities hold for $x > x_0$. \square

Definition 11 (Linear Representation). Let $f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$ be any function. A linear representation of f is an injective function $j : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}$ such that for all $i \in \{0, 1, \dots, n-1\}$,

$$j(f(i)) = a \cdot j(i)$$

in $\mathbb{Z}/m\mathbb{Z}$, where m is a positive integer and a is a multiplier from $\mathbb{Z}/m\mathbb{Z}$.

Lemma 12 (Linear Representation Lemma). *For any function $f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$ with $n > 1$, there exists an integer a_f such that for any $a > a_f$, we can construct a linear representation of f with multiplier a and modulus $m > a$.*

Proof. Let $A = A_f$ be the adjacency matrix of f and let $v = (1, 2, \dots, n)^T$. By Lemma 10, there exists x_0 such that for all integers $x > x_0$, the entries y_i of $y = \text{adj}(xI - A)v$ satisfy:

$$0 \leq y_0 < y_1 < \dots < y_{n-1} < m(x)$$

where $m(x) = \det(xI - A)$ is the characteristic polynomial of A .

Since $n > 1$, the polynomial $m(x)$ is monic of degree $n \geq 2$. Therefore, $m - \text{id}$ (where $\text{id}(x) = x$) is also monic of degree n , with leading coefficient $1 > 0$.

By Lemma 9, the polynomial $m - \text{id}$ is positive for all $x \geq |m - \text{id}|$.

Set $a_f = \max(x_0, |m - \text{id}|)$. For any $a > a_f$, we have:

- $a > x_0$, so the strict inequalities $0 \leq y_0 < y_1 < \dots < y_{n-1} < m(a)$ hold
- $a \geq |m - \text{id}|$, so $(m - \text{id})(a) = m(a) - a > 0$, which gives $m(a) > a$

Define:

- $m = m(a) = \det(aI - A)$ as the modulus (note: $m > a$ by construction)
- $j : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}$ by $j(i) = y_i \bmod m$, where $y = \text{adj}(aI - A)v$

Since $0 \leq y_i < m$ for all i and the y_i are strictly increasing, j is injective.

By Lemma 3, we have $y_{f(i)} = a \cdot y_i - m \cdot v_i$ for all i . Taking this equation modulo m gives:

$$j(f(i)) \equiv a \cdot j(i) \pmod{m}$$

Therefore, j is a linear representation of f with modulus $m > a$ and multiplier $a \in \mathbb{Z}/m\mathbb{Z}$. \square

Theorem 13 (Main Theorem). *Any finite function $f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$ has a linear representation.*

Proof. For $n > 1$, apply Lemma 12 to obtain a threshold a_f and choose $a = a_f + 1 > a_f$. The lemma provides an explicit construction of a linear representation for f with multiplier $a_f + 1$.

For $n = 1$, the result is trivial: there is only one element in $\mathbb{Z}/1\mathbb{Z}$ (namely 0), so any function satisfies $f(0) = 0$. We can use $m = 1$, the identity map $j = \text{id}$, and multiplier 0, giving $j(f(0)) = 0 = 0 \cdot j(0)$ in $\mathbb{Z}/1\mathbb{Z}$. \square

Examples

Example 14 (Quadratic Function in $\mathbb{Z}/3\mathbb{Z}$). Consider the function $f : \mathbb{Z}/3\mathbb{Z} \rightarrow \mathbb{Z}/3\mathbb{Z}$ defined by $f(x) = x^2$. This function maps:

$$\begin{aligned} 0 &\mapsto 0 \\ 1 &\mapsto 1 \\ 2 &\mapsto 4 \equiv 1 \pmod{3} \end{aligned}$$

Despite being a non-linear function, Theorem 13 guarantees that f has a linear representation.

The adjacency matrix is:

$$A_f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The characteristic matrix is:

$$xI - A_f = \begin{pmatrix} x-1 & 0 & 0 \\ 0 & x-1 & 0 \\ 0 & 0 & x \end{pmatrix}$$

The characteristic polynomial is:

$$m = \det(xI - A_f) = (x-1)^2 \cdot x = x^3 - 2x^2 + x$$

The adjugate matrix is:

$$\text{adj}(xI - A_f) = \begin{pmatrix} x(x-1) & 0 & 0 \\ 0 & x(x-1) & 0 \\ 0 & 0 & (x-1)^2 \end{pmatrix}$$

Using vector $v = (1, 2, 3)^T$, we get:

$$y = \text{adj}(xI - A_f) \cdot v = \begin{pmatrix} x(x-1) \cdot 1 \\ x(x-1) \cdot 2 \\ (x-1) \cdot 2 + (x-1)^2 \cdot 3 \end{pmatrix} = \begin{pmatrix} x^2 - x \\ 2x^2 - 2x \\ (x-1)(3x-1) \end{pmatrix} = \begin{pmatrix} x^2 - x \\ 2x^2 - 2x \\ 3x^2 - 4x + 1 \end{pmatrix}$$

For $x = 4$, we compute:

$$\begin{aligned} y_0 &= 4^2 - 4 = 16 - 4 = 12 \\ y_1 &= 2(4^2) - 2(4) = 32 - 8 = 24 \\ y_2 &= 3(4^2) - 4(4) + 1 = 48 - 16 + 1 = 33 \\ m &= 4^3 - 2(4^2) + 4 = 64 - 32 + 4 = 36 \end{aligned}$$

The injection $j : \mathbb{Z}/3\mathbb{Z} \rightarrow \mathbb{Z}/36\mathbb{Z}$ is defined by $j(i) = y_i$:

$$j(0) = 12, \quad j(1) = 24, \quad j(2) = 33$$

These values are strictly increasing and bounded by $m = 36$, so j is injective.

We verify the linear representation property using Lemma 3.

The lemma states that $y_{f(i)} = xy_i - m \cdot v_i$, which we can rewrite as:

$$j(f(i)) \equiv xj(i) \pmod{m}.$$

Verification:

$$j(f(0)) = j(0) = 12 \equiv 4 \cdot 12 - 36 \cdot 1 = 48 - 36 = 12 = 4 \cdot j(0) \pmod{36} \quad \checkmark$$

$$j(f(1)) = j(1) = 24 \equiv 4 \cdot 24 - 36 \cdot 2 = 96 - 72 = 24 = 4 \cdot j(1) \pmod{36} \quad \checkmark$$

$$j(f(2)) = j(2) = 24 \equiv 4 \cdot 33 - 36 \cdot 3 = 132 - 108 = 24 = 4 \cdot j(2) \pmod{36} \quad \checkmark$$

Thus $j(f(i)) \equiv 4 \cdot j(i) \pmod{36}$ for all $i \in \mathbb{Z}/3\mathbb{Z}$, confirming the quadratic function $f(x) = x^2$ has a linear representation with modulus $m = 36$ and multiplier $a = 4$.